ATMOSPHERE CONSTITUENTS SPECTRA MODELING UP TO 25 KM ALTITUDE

A.Kuzmichev¹, Ya.Ponurovskiy², V.Khattatov³

¹ Moscow Institute of Physics and Technology, Dolgoprudniy, Moscow Region, Russia;
 ² A.M.Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991 Moscow, Russia
 ³ Central Aerological Observatory, Dolgoprudniy, Moscow region, Russia

Abstract

Measurement of atmosphere constituents altitude distribution is important component of atmosphere monitoring (atmosphere physics and chemistry, global warming, etc.). Central aerological observatory of Russia has airplane-laboratory M55 (22 km altitude) [1]. Due to Russian state program airplane-laboratory based on Jak-42d (9.1 km altitude) is under development [2]. GPI is developing TDLS based complexes to measure H_2O , CO_2 , CO, CH_4 concentration [3].

To select analytical spectral lines and to optimize the complexes operation modeling of atmosphere constituents spectra up to 25 km altitude is necessary subject of present paper. Software "line-by-line" was developed to model atmosphere constituents' spectra. Software developed is using molecular spectral data from HITRAN 2008 [4] as well as atmosphere models available. Using software developed several atmosphere constituents (, etc.) spectra altitude dependences were modeled.

[1] http://www.aviaport.ru/directory/aviation/m55

[2] http://www.aviaport.ru/directory/aviation/jak42d/

[3] V.Galaktionov, V.Khattatov, A.Nadezhdinskii, Ya.Ponurovskiy, D.Stavrovskii, I.Vyazov,

V.Zaslavskii, TDLS complex development for airplane-laboratory "Atmosphere", p.44.

ABSTRACTS OF PAPERS 7th International Conference on Tunable Diode Laser Spectroscopy, July 13-17, 2009 Zermatt, Switzerland

[4] http://cfa-www.harvard.edu/HITRAN

Airplane - laboratories

M-55							
Speed	740 km/h						
Distance	1350 km						
Altitude	22 km						

Central aerological observatory of Russia has in operation airplane-laboratory M55.

Jak-	Jak-42d							
Speed	730 km/h							
Distance	4100 km							
Altitude	9.1 km							

Due to Russian state program airplane-laboratory based on Jak-42d (9.1 km altitude) is under development.

The complex operation parameters

Following molecules were selected for detection.

The complex water channel contains additional module to measure atmosphere turbulence (right). Parameters: P and T are atmosphere pressure and temperature, respectively, L = 40 cm.

Molecule	Concentration					
	variation, ppm					
H ₂ O	3-15000					
CO ₂	363-365					
CH ₄	1.6-1.8					
CO	0.05-0.12					

"Chernin" matrix optical system (left) is using to measure molecules concentration. Parameters: P = 100 mBar, T – room temperature, L = 40 m.

Atmosphere models

Six atmosphere models were considered.

Pressure (left), temperature (mid), and humidity (right) vs. altitude for six model atmospheres: tropical (TROP), midlatitude summer (MS), midlatitude winter (MW), subarctic winter (SW), and US standard (US STD). For majority of modeling US standard atmosphere model was used.

Spectra modeling

Spectra modeling was based on HITRAN 2008 spectral database [1], atmosphere models considered in previous slide, and software "LINE-by-LINE" developed [2].

Example of 160-character HITRAN line-transition format.			HITRAN Molecule	Molecule Chemical	Number of trans-	HITRAN Molecule	Molecule Chemical	Number of trans-			
FORTRAN Format (12.1) F12.6 192F10.3.092F5.4 F10.4 F4.2 F8.6 2A15.2A15.6T1.6T2.A1.2F7.1) corresponding to:				Number	Symbol	itions	Number	Symbol	itions		
			1	H ₂ O	63197	21	HOCI	16276			
Mol	12	Molecule number	δ _{air}	F8.6	Air-broadened pressure shift of line transition in cm ⁻¹ /atm @ 296K	2	CO ₂	62913	22	N_2	120
	-					3	O3	311481	23	HCN	4253
Iso	I1	Isotopologue number (1= most abundant, 2= second most abundant, etc.)	v', v"	2A15	Upper-state global quanta, lower-state global quanta Upper-state local quanta, lower-state local quanta	4	N ₂ O	47835	24	CH ₃ Cl	31119
		10 (// // //	, r			5	CO	4477	25	H_2O_2	100781
V _{ii}	F12.6	F12.6 Wavenumber in cm ⁻¹ q', q'	q', q"	2A15		6	CH ₄	251440	26	C_2H_2	3517
y			17.1			7	O ₂	6428	27	C_2H_6	4749
C. F10.3	F103	Intensity in cm ⁻¹ /(molecule x cm ⁻²) @ 296K	iorr	6I1	Uncertainty indices for wavenumber, intensity, air- and self-	8	NO	102280	28	PH ₃	11790
-91]	210.5	Intensity in enit (interestie it enit) (ii 25 eri	ICII		broadened half-widths, temperature-dependence, and pressure shift	9	SO ₂	38853	29	COF ₂	70601
A _{ij} E10.3		.3 Einstein-A coefficient	iref	612	Indices for table of references corresponding to wavenumber,	10	NO ₂	104223	30	SF ₆	22901
	E10.3				intensity, air- and self-broadened half-widths, temeperature-	11	NH ₃	29084	31	H_2S	20788
					dependence, and pressure shift	12	HNO ₃	271166	32	HCOOH	24808
		Air-broadened half-width (HWHM) in cm ⁻¹ /atm @ 296K	Flag	A1	Flag (*) for lines supplied with line-coupling algorithm	13	OH	42373	33	HO ₂	38804
Yair	F5.4					14	HF	107	34	0	2
-		Self-broadened half-width (HWHM) in cm ⁻¹ /atm @ 296K	g'	F7.1	Upper-state statistical weight	15	HCl	613	35	CIONO ₂	32199
yself F5.4	F5.4					16	HBr	1293	36	NO^+	1206
-		1	g"	F7.1	Lower-state statistical weight	17	HI	806	37	HOBr	4358
E" F10.4	F10.4	Lower state energy in cm ⁻¹				18	ClO	7230	38	C_2H_4	12978
-						19	OCS	19920	39	CH ₃ OH	19899
n _{air}	F4.2	Coefficient of temperature dependence of air-broadened half-width				20	H ₂ CO	2702			

Parameters of HITRAN 2008 spectral database.

[1] http://www.cfa.harvard.edu/HITRAN/

[2] A.Nadezhdinskii, Ya.Ponurovskiy, "LINE-by-LINE" SOFTWARE FOR SPECTRA SIMULATION ", p.59. ABSTRACTS OF PAPERS 7th International Conference on Tunable Diode Laser Spectroscopy, July 13-17, 2009 Zermatt, Switzerland

"LINE-by-LINE" software

User can select molecule from HITRAN 2008, can determine experimental parameters: total and partial pressures, temperature, optical length, and spectral range. The software performs convolution of model spectrum with spectral line shape. In present case water vapor spectrum modeling is presented. "LINE-by-LINE" can analyze spectra of 4 different molecules.

"LINE-by-LINE" additional options

Water vapor spectrum (white) convolution with Gaussian function with HWHH 0.06 cm⁻¹ (red).

Water vapor absorbance second derivative.

Water channel

Tasks of water vapor channel: humidity and isotopes ratio measurements inside "Chernin" matrix optical system, humidity and turbulence measurements outside of airplane. Spectral range near 1.39 μ was selected as analytical one.

Model water vapor spectra for following parameters: L=40m, P=100mBar, C=1700ppm

Humidity and isotopes measurements in "Chernin" matrix optical system

Altitude dependence of maximum line absorbance for different water atoms isotopes.

<u>Conclusion: Different isotopes can</u> <u>be detected up to 25 km altitude.</u>

Model water vapor spectrum and lines identification.

Parameters: L = 40 m, P = 100 mBar, natural abundance.

Humidity and turbulence measurements in open atmosphere

Maximum absorbance as function of altitude.

<u>Conclusion: Absorbance is high</u> <u>enough to measure turbulence.</u>

Analytical line absorbance modeling for different altitudes.

Parameters: L = 40 cm.

US standard atmosphere was used.

CO₂ channel

Tasks of CO_2 channel: CO_2 concentration and isotopes ratio measurements inside "Chernin" matrix optical system.

Parameters: L = 40 m, P = 100 mBar, Red - H_2O (15000 ppm), green - CO_2 (365 ppm), blue - CH_4 (1.8 ppm).

Isolated spectral line 6248.5779 cm⁻¹ was selected as analytical one.

Left - analytical line max absorbance vs. altitude.

<u>Conclusion: Absorbance is high</u> <u>enough to measure CO₂ concentration</u> <u>for altitudes up to 25 km.</u>

Ratio ${}^{13}CO_2$: ${}^{12}CO_2$

Parameters: L = 40 m, P = 100 mBar, Red $- {}^{12}C^{16}O_2$ (365 ppm), green $- {}^{13}C^{16}O_2 + {}^{13}C^{16}O^{18}O$ (natural abundance), white $- CH_4$ (1.8 ppm).

Spectral lines 6249.6694 and 6249.9753 cm⁻¹ were selected as analytical ones to detect ${}^{12}C^{16}O_2$ and ${}^{13}C^{16}O_2$, respectively.

<u>Conclusion: Absorbance is high enough to measure ¹³C/¹²C ratio for altitudes up to 25 km.</u>

CH₄ channel

Task of CH_4 channel: measure CH_4 inside "Chernin" matrix optical system.

Parameters: L = 40 m, P = 100 mBar, blue - CH_4 (1.8 ppm), red - H_2O (15000 ppm), green - CO_2 (365 ppm).

CH₄ multiplet 6057.08 cm⁻¹ was selected as analytical line.

Left - analytical line max absorbance vs. altitude.

<u>Conclusion: Absorbance is high</u> <u>enough to measure CH₄ concentration</u> <u>for altitudes up to 25 km.</u>

CO channel

Task of CO channel: measure CO inside "Chernin" matrix optical system.

Parameters: L = 40 m, P = 100 mBar, white - CO (0.1 ppm), blue - CH₄ (1.8 ppm), red - H₂O (15000 ppm), green - CO₂ (365 ppm).

0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00000 0.00000 0.0000000 0.000000 0.0000000.00000000000000000000000

Spectral line 4291.4994 cm⁻¹ was selected as analytical line.

Left - analytical line max absorbance vs. altitude.

<u>Conclusion: Absorbance is high</u> <u>enough to measure CO concentration</u> <u>for altitudes up to 25 km.</u>

Conclusion

Software "line-by-line" was developed to model atmosphere constituents spectra. Software developed is using molecular spectral data from HITRAN 2008 as well as atmosphere models available. Using software developed several atmosphere constituents (H₂O, CO₂, CO, CH₄) spectra altitude dependences were modeled. Modeling performed shows:

- 1. Different water molecule isotopes can be detected up to 25 km altitude.
- 2. Water absorbance is high enough to measure atmosphere turbulence.
- 3. CO_2 concentration can be measured for altitudes up to 25 km.
- 4. ¹³C/¹²C ratio can be measured for altitudes up to 25 km.
- 5. CH₄ concentration can be measured for altitudes up to 25 km.
- 6. CO concentration can be measured for altitudes up to 25 km.